Mapping snow depth return levels: smooth spatial modeling versus station interpolation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Modeling of Extreme Snow Depth by Juliette Blanchet

The spatial modeling of extreme snow is important for adequate risk management in Alpine and high altitude countries. A natural approach to such modeling is through the theory of max-stable processes, an infinitedimensional extension of multivariate extreme value theory. In this paper we describe the application of such processes in modeling the spatial dependence of extreme snow depth in Switz...

متن کامل

Bayesian Spatial Modeling of Extreme Precipitation Return Levels

Quantification of precipitation extremes is important for flood planning purposes, and a common measure of extreme events is the r-year return-level. We present a method for producing maps of precipitation return levels and uncertainty measures and apply to a Colorado region. Separate hierarchical models are constructed for the intensity and the frequency of extreme precipitation events. For in...

متن کامل

Interoperability – Spatial Interpolation and Automated Mapping

We report on recent developments in the European INTAMAP (Interoperability and Automated Mapping) project on web services for processing radiological data from the EURDEP data base. First, we briefly describe the goals of this project and its relation to other European initiatives and infrastructures for global monitoring of the environment (GMES and INSPIRE). Then we report on the development ...

متن کامل

Modeling bulk density and snow water equivalent using daily snow depth observations

Bulk density is a fundamental property of snow relating its depth and mass. Previously, two simple models of bulk density (depending on snow depth, date, and location) have been developed to convert snow depth observations to snow water equivalent (SWE) estimates. However, these models were not intended for application at the daily time step. We develop a new model of bulk density for the daily...

متن کامل

Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data

‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hydrology and Earth System Sciences

سال: 2010

ISSN: 1607-7938

DOI: 10.5194/hess-14-2527-2010